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Introduction

• Blockcipher mode : turning a blockcipher (BC) 
into a more usable function

• Ex. CBC encryption mode seen as a 
conversion of  fixed-length encryption into 
variable-length encryption
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Designing modes

• Designing secure and optimized BC mode is 
generally a complex task

• This talk will show some useful ideas to 
reduce this complexity, with applications to 
authenticated encryption (AE)

• The first part is about “inverse-free” mode, 
and a corresponding CAESAR candidate, OTR 

• The second part is about “direct tweaking” 
and a corresponding CAESAR candidate, 
CLOC and SILC
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Removing Blockcipher Inverse
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Modes w/ BC inverse

• Some blockcipher modes use blockcipher 
inverse (decryption) 

• Ex. CBC mode needs BC inverse (DK) for the 
decryption
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Our task
• Given a target mode which needs BC inverse, 
• Modify it to inverse-free,   
• Keeping features as much as possible

– I/O format
– # of primitive calls
– security properties
– implementation options (e.g. parallelizability)
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Advantages of removing inverse
• We have several reasons for it, taking AES for 

example
• Size benefit
– Hardware gate : ~10K additional gates for AES-

decryption core
– Software memory reduction

• Inverse S-box , inverse T-tables etc. 

• Speed benefit
– For some platforms AES-dec is slower than AES-enc

(due to the difference between MixCol and InvMixCol)
– Ex. Byte-wise AES on 8-bit MCU : ~20 to 50 % 

slowdown
– Some SIMD codes on High-end CPU 

• Bitslice or Vector-permutation
• Not true for AES-NI  
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Advantages of removing inverse

• Security benefit
– For modes w/ BC inverse, BC is (generally) 

required to be secure against Chosen-ciphertext 
attack (CCA) 
• Strong pseudorandom permutation (SPRP)

– For inverse-free modes, we need a weaker 
assumption, Chosen-plaintext attack (CPA)
security
• PRP or psedorandom function (PRF) 

• Others 
– Enables the use of non-invertible primitives, e.g. 

HMAC
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Basic idea 

• A classical way to implement cryptographic 
permutation using cryptographic functions

• Feistel !

• More formally, we implement 2n-bit 
permutation by iterating a Feistel 
permutation having n-bit blockcipher as 
round function

• Also called Luby-Rackoff cipher (LRC)

10

EK

n



Security of LR Cipher
• Brief review of Luby-Rackoff
• Assuming each round function is an independent PRF,
• 3-round LRC is CPA-secure (i.e. a PRP)
• 4-round LRC is CCA-secure (i.e. a SPRP)
• For both cases, distinguishing advantage from 2n-bit 

random permutation is O(q2/2n) for q queries
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Inverse-removal : Basic Approach

• Find a target mode (say CBC)

• Step 1 . Define a 2-block version of CBC, using a 
2n-bit blockcipher G 
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Inverse-removal : Basic Approach

• Step 2. Find the exact security condition for G
to keep the original security bounds w.r.t n

– typically birthday bound, i.e. O(q2/2n)
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Inverse-removal : Basic Approach

• Step 3.  Instantiate G by LRC w/ forward BC 
function, then find # of rounds meeting the 
security condition 

• 4-round is usually enough1, but we often find 
a smaller-round is secure

• May need further modifications…
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Case of Authenticated Encryption

• We focus on authenticated encryption (AE), 
which provides confidentiality and integrity

• We consider nonce-based AE
– Each encryption takes unique nonce N

– Plaintext M is encrypted to Ciphertext C, with Tag 
T, where |M| = |C|

– Additionally we may have Associated Data (AD) as 
information not encrypted but MACed

• The target is OCB mode, which is a seminal 
nonce-based AE developed by Rogaway (et 
al.)
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OCB (simplified)
• Encryption  = ECB w/ mask
• MAC = encryption of plaintext checksum (XORs of plaintext 

blocks)
• Mask is a function of (nonce, block index), and Key

– Needs one BC call to produce all masks 
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Security of OCB

• Mask-Enc-Mask can be seen as an instance of 
Tweakable BC (Tweak = (N,i))

• OCB proof requires CCA-security for this TBC

– (Tweakable SPRP, TSPRP)
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Features of OCB

OCB has a number of strong features

• Rate-1 : 1 BC call for 1 input block
– Here rate = # of BC calls for 1 input block

• Parallelizable for encryption and decryption

• On-line processing

• Provable security based on the assumption 
BC = SPRP
– Security up to birthday bound – advantage 

O(�2/2n) for privacy/authenticity notions, for �
blocks in queries

• But it needs BC inverse for decryption
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Removing Inverse from OCB
• Step 1: set OCB for 2n-bit LRC G

– Each round takes a mask g(N,block index, round index)

• G itself takes tweak (N, block index)

• If we follow OCB proof,  G needs to be 2n-bit TSPRP 
w/ adv. O(q2/2n) -> G should be 4-round LRC 
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Removing Inverse from OCB
• Step 2: we found the exact condition on G, which is as follows
• For each tweak (N,i), (let us set i=1)
1 An encryption query (X[1],X[2]) generates random output 

(Y[1],Y[2])
2 Given (X[1],X[2]) and (Y[1],Y[2]), decryption query (Y’[1],Y’[2]) 

not equal to (Y[1],Y[2]) generates an n-bit unpredictable part in 
the output (X’[1],X’[2]) 

• Allowing distinguishing bias of O(q2/2n)
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Using 2-round is enough 
• Step 3 : find the minimum # of rounds: 
• The conditions are about one enc-query and 

dec-query for one tweak
• And these conditions are satisfied with 2-round 

LRC. Why?
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Using 2-round is enough 

• Admitting bias O(q2/2n), round functions can be seen 
as independent random functions

• Then, (Y[1],Y[2]) is uniformly random
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Using 2-round is enough 

• Given (X[1],X[2])(Y[1],Y[2]), and dec query (Y’[1],Y’[2]), 
we have two cases :

• When Y’[1] ≠ Y[1], X’[2] is independent and random  

• Unless Z’ collides with Z

• Z’= Z occurs with prob. 1/2n
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Using 2-round is enough 

• When Y’[1] = Y[1] and Y’[2] ≠ Y[2], Z’ is always 
different from Z and X’[2] is independent and 
random
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OTR : Offset Two-Round (simplified)
• The result : OTR mode presented at Eurocrypt 2014

• (Roughly) Encryption  = 2-round LRC,

• MAC = Encryption of plaintext checksum, which is 
XORs of even plaintext block 
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Additional points in design

• Need to handle partial-length messages

– Padding to 2n bits is no good (expansion!) 

• OTR avoids unnecessary ciphertext expansion, 
with dedicated functions for the last chunk
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Security of OTR

• A brief description of nonce-based AE security 
notions : 

• Privacy : the hardness of distinguishing (C,T) 
from random sequence, using enc queries (N,M)

• Authenticity : the hardness of producing a 
forgery (N’,C’,T’), using enc and dec queries

– Forgery = given multiple (N,M,C,T) obtained by  enc
queries, generate a new (N’,C’,T’) which is valid

• The observations so far allow to prove  O(�2/2n) 
advantages for both notions, for � blocks in 
queries

– Similar to OCB and many others
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Summary of OTR

• Mostly keeping OCB’s good properties    
– Rate-1

– Parallelizable for Enc & Dec

– On-line (under 2-block partition)

• And inverse-free, provably secure if BC is a PRP or PRF

• CAESAR submission as a mode of AES (AES-OTR) 

28
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OTR implementations w/ AES

• Basic Expectation

– Almost the same speed as OCB  = almost the 
same speed as enc-only mode

– with smaller size (sw memory / hw gates) 

– Dec is as fast as Enc

• Suitable to heterogeneous environment
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OTR implementations with AES

• On Intel CPU w/ AESNI

– Bogdanov et al. [BLT14] (Haswell Core i5)

• Less than 1 cycles/byte (cpb)

• difference from OCB3 is ~0.15 cpb

– We obtained similar figures with our own codes 
(0.88 cpb at Haswell Core i7)
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OTR implementations with AES

• On 8-bit Atmel AVR (ATmega 128)

– Assembly AES from open source (AVRAES), runs at 
156 cpb for enc, 196 cpb for dec

– Mode is written in assembly 

– ~240 cpb for 256 input bytes, for both Enc/Dec

– ~2100 ROM bytes, ~180 RAM bytes

• For reference, OCB on Atmega 128 [IMGM14]

– AVRAES + mode written in C

– 315 cpb for Enc, 354 for Dec (~256 input bytes)

– ~5000 ROM, ~970 RAM bytes
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OTR implementations with AES

• Hardware : working on FPGA

• Third-party implementation for any platform 
is always welcome!
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Possible Further Applications

• OTR was a quite successful application, but there 
may be some other application areas ;

• Large-block cipher mode ?
– CMC and EME (Rate-2, using inverse)
– Recent AEZ v3 (a CAESAR candidate) by Hoang et al. did 

the work for EME, results in a rate-2.5 scheme

• On-line (authenticated) encryption ?
– TC1/2/3 by Rogaway and Zhang 
– CAESAR submissions (COPA, ELmD, POET)

• COBRA : inverse-free but turned out to be wrong (withdrawn 
due to the attack by Nandi)

• Questions : 
– Achievable rate 
– Appropriate security notions (for 2n-bit block ?)

• Answers can depend on the target functionality
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Direct tweaking and Decomposition 
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Motivation

• Modes generally need its own memories 
outside BC we use

– OCB/OTR’s mask, CBC-MAC chain value, etc.

• How we can reduce these memories?

– Not by implementation, not by changing the 
blockcipher – mode refinements 

– Possibly keeping the efficiency 

• Beneficial to constrained devices

– Often comes with several side effects (reduced 
pre-computation etc.)
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A bad example

• EAX [Bellare-Rogaway-Wagner] : a rate-2 AE 
mode
– Enc-then-auth style

– Provable security 

• EAX-prime : ANSI standard for Smart Grid 
(C12.22)
– Derived from EAX, but requires fewer state 

memories than EAX, which would be good for 
constrained devices

• Both use different variants of CMAC (tweaked 
CMAC)

• and the difference is significant in security
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Tweaked CMAC in EAX
• 3 variants with CMAC(tweak)  = CMAC(tweak || X), 

tweak = 0,1,2 (in n bits)
– EK(tweak) can be cached as initial mask
– 4 ~ 6 state memory blocks
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Tweaked CMAC in EAX-Prime
• 2 variants with CMAC[D] and CMAC[Q] 

(tweak = D, Q)

• Initial mask set = last mask set ({D,Q})
• Reduced state memories : 2 ~ 3 blocks 

39

EK EK EK

M[1] M[m-1] M[m] || 10…0

…

CMACK[t](M)

(|M[m|=n )

Partial block indicator 

(otherwise )

oror
D

Q

D (=2L)

Q (=4L)

Tweak t 

L = EK(0
n)

1 or 2 state 
memories 

1 state memory 
for chain 



Insecure Separation 

• CMAC[D] and CMAC[Q] fail to provide 
(independent) PRFs

• In case |M| ≤ n; 
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A good example
• How to avoid 2L / 4L masking in CMAC, w/o another 

BC call ?
• GCBC [Nandi] did the job
• Instead of masking, GCBC introduces in-state 

modification,
• which we call tweak function or direct tweaking
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Security of GCBC
• How we prove security of GCBC? 
• Use decomposition via dummy mask

– Initially employed by Iwata-Kurosawa for proof of CMAC

• We define 4 n-bit functions using a random dummy mask U
• GCBC can be simulated by these 4 functions
• GCBC is easily analyzed if 4 functions were independent 

PRFs
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GCBC analysis  
• We prove 4 functions are (comp-independent) PRFs 
• Step 1. find input differential probability constraints

– e.g. max_c Pr[U xor (U<<1)=c] for Q2 and Q3
– 4C2 = 6 constraints

• Step 2. prove all constraints have a small upper bound
– secure from the theory of tweakable blockcipher [Liskov-Rivest-

Wagner]
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GCBC analysis (Contd.) 

• Step 3. Proving CBC-MAC-like function using 
4 PRFs
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The case of Authenticated Encryption
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Initial design

• We start with a generic composition

– Enc-then-MAC

– MAC = CBC-MAC-like

– Enc = CTR or OFB or CFB : We chose CFB for its 
small memory 

– One-key : insecure at this stage
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Initial design

• CCM, EAX, and EAX-prime use input masking 
based on E(const)

• While we want our AE to work without masking 
– Small memory and fast for short input w/o 

precomputation (or, key-agility)

– Suitable to constrained devices, short-packet 
communication
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Initial design

• We want to make it secure with tweak 
functions

• How should we modify plain CBC-MAC + 
CFB?

• How many tweak functions needed, where to 
insert?
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Concrete design = CLOC

• Investigated a large number of possibilities

• We found a solution using 5 tweak functions + 2 
msb-fixing functions
– h, f1, f2, g1, g2, and fix0, fix1

• The result is CLOC (presented at FSE 2014 and 
submitted to CAESAR) [Iwata-M-Guo-Morioka]
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Decomposition of CLOC
• How we prove the security of CLOC?

• Decomposition needs to consider various cases on 
the lengths of Nonce, AD, and plaintext/ciphertext 

• The analysis is considerably more complex than the 
case of MAC, as follows 
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Conditions for the tweak functions
• If these 26 functions were independent, proving security is 

not difficult
• We have 26 functions -> 26C2 =325 differential provability 

constraints to make CLOC secure !
• Removing equivalent ones, there remains 55  constraints
• Ideally all should be satisfied w/ prob = 1/2n

• How we make ?
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xor f2(h(U)) = c]



Building the tweak functions
• For efficiency reason we require the tweak functions to be

– computed by word permutation and XOR, with 4 words   
– -> each function is a 4x4 matrix over GF(2^n/4)
– -> differential pr = 1/2n iff corresponding sum of matrices is full 

rank (4)

• Define a generator matrix M as

– K ∙ M = (K[1], K[2], K[3], K[4]) ∙ M  = (K[2], K[3], K[4], K[1] xor K[2])
– Assign Mi to a tweak function
– M15=M0 = identity so we have 14^5 space for search 
– Each Mi (except i=5 and 10) can be implemented using at most 4 

word XORs and a block permutation
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Search

• We associate (i1, i2, i3, i4, i5) ∈	{1, . . . , 14}5 with 
(f1, f2, g1, g2, h)

– f1: M
i1, f2: M

i2, g1: M
i3, g2: M

i4, h: Mi5 

• Tested all (i1, i2, i3, i4, i5) ∈	{1, . . . , 14}5 with 55 
constraints, using computer

– matrix rank computations

• 864 combinations proved to be secure

• Define a cost function to choose the best 
combination (# of XORs etc.)

– The chosen one is (i1, i2, i3, i4, i5) = (8, 1, 2, 1, 4)

– This specifies CLOC
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Performance of CLOC-AES 

• Primary focus : embedded software

• Atmel AVR ATmega128

– 8-bit microprocessor

– Using AVRAES

• 156.7 cpb for encryption, 196.8 cpb for decryption

– Compare CLOC with EAX and OCB3

• All modes are written in C

• OCB3 is taken from OCB website, w/ some 
modifications for optimized performance on AVR
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Software Implementation

• 1-block AD, no static AD computation

• In CLOC, the RAM usage is low and Init is fast, 
and it is fast for short input data, up to around 
128 bytes
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Conclusions
• Two design ideas to make blockcipher modes 

efficient
• Inverse-removal : removing BC inverse w/o 

increasing BC calls
– substituting BC/BC-1 with 2-round Feistel
– Result is OTR : inverse-free, rate-1, parallel AE

• Direct tweaking : reducing the memory amount, 
removing precomputation
– Result is CLOC : a low-overhead AE, fast for short 

input
– CLOC focuses on (embedded) software
– We also designed SILC as a variant of CLOC for 

(constraind) hardware 

• Would be applicable to other application areas …
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Thank you !!
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