Design approach to efficient blockcipher modes

Kazuhiko Minematsu, NEC Corporation
The Fourth Asian Workshop on Symmetric Key Cryptography,
19-22, December 2014, SETS Chennai, India

Introduction

- Blockcipher mode : turning a blockcipher (BC) into a more usable function
- Ex. CBC encryption mode seen as a conversion of fixed-length encryption into variable-length encryption

Designing modes

- Designing secure and optimized BC mode is generally a complex task
- This talk will show some useful ideas to reduce this complexity, with applications to authenticated encryption (AE)
- The first part is about "inverse-free" mode, and a corresponding CAESAR candidate, OTR
- The second part is about "direct tweaking" and a corresponding CAESAR candidate, CLOC and SILC

Removing Blockcipher Inverse

Modes w/ BC inverse

- Some blockcipher modes use blockcipher inverse (decryption)
- Ex. CBC mode needs $B C$ inverse $\left(D_{k}\right)$ for the decryption

Our task

- Given a target mode which needs $B C$ inverse,
- Modify it to inverse-free,
- Keeping features as much as possible
- I/O format
- \# of primitive calls
- security properties
- implementation options (e.g. parallelizability)

Our task

- Given a target mode which needs $B C$ inverse,
- Modify it to inverse-free,
- Keeping features as much as possible
- I/O format
- \# of primitive calls
- security properties
- implementation options (e.g. parallelizability)

Advantages of removing inverse

- We have several reasons for it, taking AES for example
- Size benefit
- Hardware gate : ~10K additional gates for AESdecryption core
- Software memory reduction
- Inverse S-box, inverse T-tables etc.
- Speed benefit
- For some platforms AES-dec is slower than AES-enc (due to the difference between MixCol and InvMixCol)
- Ex. Byte-wise AES on 8-bit MCU : ~20 to 50 \% slowdown
- Some SIMD codes on High-end CPU
- Bitslice or Vector-permutation
- Not true for AES-NI

Advantages of removing inverse

- Security benefit
- For modes w/ BC inverse, BC is (generally) required to be secure against Chosen-ciphertext attack (CCA)
- Strong pseudorandom permutation (SPRP)
- For inverse-free modes, we need a weaker assumption, Chosen-plaintext attack (CPA) security
- PRP or psedorandom function (PRF)
- Others
- Enables the use of non-invertible primitives, e.g. HMAC

Basic idea

- A classical way to implement cryptographic permutation using cryptographic functions
- Feistel!
- More formally, we implement 2n-bit permutation by iterating a Feistel permutation having n -bit blockcipher as round function
- Also called Luby-Rackoff cipher (LRC)

Security of LR Cipher

- Brief review of Luby-Rackoff
- Assuming each round function is an independent PRF,
- 3-round LRC is CPA-secure (i.e. a PRP)
- 4-round LRC is CCA-secure (i.e. a SPRP)
- For both cases, distinguishing advantage from $2 n$-bit random permutation is $\mathrm{O}\left(\mathrm{q}^{2} / 2^{n}\right)$ for q queries

Inverse-removal : Basic Approach

- Find a target mode (say CBC)
- Step 1 . Define a 2-block version of CBC, using a 2n-bit blockcipher G

Inverse-removal : Basic Approach

- Step 2. Find the exact security condition for \mathbf{G} to keep the original security bounds w.r.t n
- typically birthday bound, i.e. O($\left.q^{2} / 2^{n}\right)$

$E=P R P$

$$
\mathbf{G}=\ldots \text { ? }
$$

Inverse-removal : Basic Approach

- Step 3. Instantiate G by LRC w/ forward BC function, then find \# of rounds meeting the security condition
- 4-round is usually enough ${ }^{1}$, but we often find a smaller-round is secure
- May need further modifications...

Case of Authenticated Encryption

- We focus on authenticated encryption (AE), which provides confidentiality and integrity
- We consider nonce-based AE
- Each encryption takes unique nonce N
- Plaintext M is encrypted to Ciphertext C, with Tag T, where $|\mathrm{M}|=|\mathrm{C}|$
- Additionally we may have Associated Data (AD) as information not encrypted but MACed
- The target is OCB mode, which is a seminal nonce-based AE developed by Rogaway (et al.)

OCB (simplified)

- Encryption = ECB w/ mask
- MAC = encryption of plaintext checksum (XORs of plaintext blocks)
- Mask is a function of (nonce, block index), and Key
- Needs one BC call to produce all masks

Mask function
$g(N, i)=E_{k}(N) \times 2^{i}\left(\right.$ over $\left.G F\left(2^{n}\right)\right)$ for OCB2

$$
\begin{aligned}
& \text { SUM } \\
& =\mathrm{M}[1] \oplus \mathrm{M}[2] \oplus \ldots \oplus \mathrm{M}[1]
\end{aligned}
$$

Security of OCB

- Mask-Enc-Mask can be seen as an instance of Tweakable BC (Tweak = (N,i))
- OCB proof requires CCA-security for this TBC
- (Tweakable SPRP, TSPRP)

Features of OCB

OCB has a number of strong features

- Rate-1 : 1 BC call for 1 input block
- Here rate = \# of BC calls for 1 input block
- Parallelizable for encryption and decryption
- On-line processing
- Provable security based on the assumption BC = SPRP
- Security up to birthday bound - advantage $\mathrm{O}\left(\sigma^{2} / 2^{n}\right)$ for privacy/authenticity notions, for σ blocks in queries
- But it needs BC inverse for decryption

Removing Inverse from OCB

- Step 1: set OCB for $2 n$-bit LRC G
- Each round takes a mask g(N,block index, round index)
- G itself takes tweak (N, block index)
- If we follow OCB proof, \mathbf{G} needs to be $2 n$-bit TSPRP w/ adv. $\mathrm{O}\left(\mathrm{q}^{2} / 2^{\mathrm{n}}\right)$-> G should be 4-round LRC

Removing Inverse from OCB

- Step 2: we found the exact condition on \mathbf{G}, which is as follows
- For each tweak (N, i), (let us set $\mathrm{i}=1$)

1 An encryption query (X[1],X[2]) generates random output (Y[1],Y[2])
2 Given (X[1],X[2]) and (Y[1],Y[2]), decryption query ($\mathrm{Y}^{\prime}[1], Y^{\prime}[2]$) not equal to $(\mathrm{Y}[1], \mathrm{Y}[2])$ generates an n -bit unpredictable part in the output ($\mathrm{X}^{\prime}[1], \mathrm{X}^{\prime}[2]$)

- Allowing distinguishing bias of $O\left(q^{2} / 2^{n}\right)$

Using 2-round is enough

- Step 3 : find the minimum \# of rounds:
- The conditions are about one enc-query and dec-query for one tweak
- And these conditions are satisfied with 2 -round LRC. Why?

Using 2-round is enough

- Admitting bias $\mathrm{O}\left(\mathrm{a}^{2} / 2^{\mathrm{n}}\right)$, round functions can be seen as independent random functions
- Then, (Y[1],Y[2]) is uniformly random

Using 2-round is enough

- Given (X[1],X[2])(Y[1],Y[2]), and dec query ($\left.\mathrm{Y}^{\prime}[1], Y^{\prime}[2]\right)$, we have two cases :
- When $Y^{\prime}[1] \neq Y[1], X^{\prime}[2]$ is independent and random
- Unless Z' collides with Z
- $Z^{\prime}=Z$ occurs with prob. $1 / 2^{\text {n }}$

Using 2-round is enough

- When $\mathrm{Y}^{\prime}[1]=Y[1]$ and $\mathrm{Y}^{\prime}[2] \neq \mathrm{Y}[2], \mathrm{Z}^{\prime}$ is always different from Z and $X^{\prime}[2]$ is independent and random

$2 n$-bit randomness for an enc-query

OTR : Offset Two-Round (simplified)

- The result : OTR mode presented at Eurocrypt 2014
- (Roughly) Encryption = 2-round LRC,
- MAC = Encryption of plaintext checksum, which is XORs of even plaintext block

Additional points in design

- Need to handle partial-length messages
- Padding to $2 n$ bits is no good (expansion!)
- OTR avoids unnecessary ciphertext expansion, with dedicated functions for the last chunk

Security of OTR

- A brief description of nonce-based AE security notions:
- Privacy : the hardness of distinguishing (C, T) from random sequence, using enc queries (N, M)
- Authenticity : the hardness of producing a forgery ($\mathrm{N}^{\prime}, \mathrm{C}^{\prime}, \mathrm{T}^{\prime}$), using enc and dec queries
- Forgery = given multiple ($\mathrm{N}, \mathrm{M}, \mathrm{C}, \mathrm{T}$) obtained by enc queries, generate a new ($\mathrm{N}^{\prime}, \mathrm{C}^{\prime}, \mathrm{T}^{\prime}$) which is valid
- The observations so far allow to prove $\mathrm{O}\left(\sigma^{2} / 2^{n}\right)$ advantages for both notions, for σ blocks in queries
- Similar to OCB and many others

Summary of OTR

- Mostly keeping OCB's good properties
- Rate-1
- Parallelizable for Enc \& Dec
- On-line (under 2-block partition)
- And inverse-free, provably secure if $B C$ is a PRP or PRF
- CAESAR submission as a mode of AES (AES-OTR)

Table 1. A comparison of AE modes. Calls denotes the number of calls for m-block message and a-block header and one-block nonce, without constants.

Mode	Calls	On-line	Parallel	Primitive
CCM [3]	$a+2 m$	no	no	E
GCM [5]	$m[\mathrm{E}]$ and $a+m[\mathrm{Mul]}$	yes	yes	E, Mul ${ }^{\dagger}$
EAX [16]	$a+2 m$	yes	no	E
OCB [32, 43, 46]	$a+m$	yes	yes	E, E^{-1}
CCFB [35]	$a+c m$ for some $1<c^{\ddagger}$	yes	no	E
OTR	$a+m$	yes	yes	E

[^0]Comparison of AE modes

OTR implementations w/ AES

- Basic Expectation
- Almost the same speed as OCB = almost the same speed as enc-only mode
- with smaller size (sw memory / hw gates)
- Dec is as fast as Enc
- Suitable to heterogeneous environment

OTR implementations with AES

- On Intel CPU w/ AESNI
- Bogdanov et al. [BLT14] (Haswell Core i5)
- Less than 1 cycles/byte (cpb)
- difference from OCB3 is $\sim 0.15 \mathrm{cpb}$
- We obtained similar figures with our own codes (0.88 cpb at Haswell Core i7)

OTR implementations with AES

- On 8-bit Atmel AVR (ATmega 128)
- Assembly AES from open source (AVRAES), runs at 156 cpb for enc, 196 cpb for dec
- Mode is written in assembly
- ~240 cpb for 256 input bytes, for both Enc/Dec
- ~2100 ROM bytes, ~180 RAM bytes
- For reference, OCB on Atmega 128 [IMGM14]
- AVRAES + mode written in C
- 315 cpb for Enc, 354 for Dec (~256 input bytes)
- ~5000 ROM, ~970 RAM bytes

OTR implementations with AES

- Hardware : working on FPGA
- Third-party implementation for any platform is always welcome!

Possible Further Applications

- OTR was a quite successful application, but there may be some other application areas;
- Large-block cipher mode ?
- CMC and EME (Rate-2, using inverse)
- Recent AEZ v3 (a CAESAR candidate) by Hoang et al. did the work for EME, results in a rate- 2.5 scheme

Possible Further Applications

- OTR was a quite successful application, but there may be some other application areas ;
- Large-block cipher mode ?
- CMC and EME (Rate-2, using inverse)
- Recent AEZ v3 (a CAESAR candidate) by Hoang et al. did the work for EME, results in a rate- 2.5 scheme
- On-line (authenticated) encryption ?
- TC1/2/3 by Rogaway and Zhang
- CAESAR submissions (COPA, ELmD, POET)
- COBRA : inverse-free but turned out to be wrong (withdrawn due to the attack by Nandi)
- Questions:
- Achievable rate
- Appropriate security notions (for 2 n -bit block ?)
- Answers can depend on the target functionality

Direct tweaking and Decomposition

Motivation

- Modes generally need its own memories outside BC we use
- OCB/OTR's mask, CBC-MAC chain value, etc.
- How we can reduce these memories?
- Not by implementation, not by changing the blockcipher - mode refinements
- Possibly keeping the efficiency
- Beneficial to constrained devices
- Often comes with several side effects (reduced pre-computation etc.)

A bad example

- EAX [Bellare-Rogaway-Wagner] : a rate-2 AE mode
- Enc-then-auth style
- Provable security
- EAX-prime : ANSI standard for Smart Grid (C12.22)
- Derived from EAX, but requires fewer state memories than EAX, which would be good for constrained devices
- Both use different variants of CMAC (tweaked CMAC)
- and the difference is significant in security

Tweaked CMAC in EAX

- 3 variants with CMAC(tweak) $=\operatorname{CMAC}($ tweak $\|$ X), tweak $=0,1,2$ (in n bits)
- E_{K} (tweak) can be cached as initial mask
- $4 \sim 6$ state memory blocks

Tweak

Tweaked CMAC in EAX-Prime

- 2 variants with $\mathrm{CMAC}[\mathrm{D}]$ and $\mathrm{CMAC[Q]}$
(tweak = D, Q)
- Initial mask set = last mask set (\{D,Q\})
- Reduced state memories : 2 ~ 3 blocks

Insecure Separation

- CMAC[D] and CMAC[Q] fail to provide (independent) PRFs
- In case $|\mathrm{M}| \leq \mathrm{n}$;

CMAC[D] when $\left|M_{1}\right|=n$

CMAC[Q] when $0 \leq\left|M_{2}\right|<n$

Making $M_{1}=M_{2}| | 10 \ldots 0$ yields the same outputs -> unlikely for two independent PRFs

Insecure Separation

- CMAC[D] and CMAC[Q] fail to provide (independent) PRFs
- In case $|\mathrm{M}| \leq \mathrm{n}$;

CMAC[D] when $\left|M_{1}\right|=n$

CMAC[Q] when $0 \leq\left|M_{2}\right|<n$
$\mathrm{M}_{2} \mid 10 \ldots 0$

Allows instant attacks w/ 1-block input against EAX-prime ([M-Lucks-Morita-Iwata FSE 2013])

Making $M_{1}=M_{2} \| 10 \ldots 0$ yields the same outputs -> unlikely for two independent PRFs

A good example

- How to avoid 2L / 4L masking in CMAC, w/o another BC call ?
- GCBC [Nandi] did the job
- Instead of masking, GCBC introduces in-state modification,
- which we call tweak function or direct tweaking

(slightly different from the original, and for 1-block message the operation is different)

Security of GCBC

- How we prove security of GCBC?
- Use decomposition via dummy mask
- Initially employed by Iwata-Kurosawa for proof of CMAC
- We define 4 n -bit functions using a random dummy mask U
- GCBC can be simulated by these 4 functions
- GCBC is easily analyzed if 4 functions were independent PRFs

GCBC analysis

- We prove 4 functions are (comp-independent) PRFs
- Step 1. find input differential probability constraints
- e.g. max_c $\operatorname{Pr}[\mathrm{U}$ xor $(\mathrm{U} \ll 1)=c]$ for Q2 and Q3
$-{ }_{4} C_{2}=6$ constraints
- Step 2. prove all constraints have a small upper bound
- secure from the theory of tweakable blockcipher [Liskov-RivestWagner]

GCBC analysis (Contd.)

- Step 3. Proving CBC-MAC-like function using 4 PRFs

The case of Authenticated Encryption

Initial design

- We start with a generic composition
- Enc-then-MAC
$-\mathrm{MAC}=$ CBC-MAC-like
- Enc $=$ CTR or OFB or CFB : We chose CFB for its small memory
- One-key : insecure at this stage

C : Ciphertext
T:Tag

Initial design

- CCM, EAX, and EAX-prime use input masking based on E(const)
- While we want our AE to work without masking
- Small memory and fast for short input w/o precomputation (or, key-agility)
- Suitable to constrained devices, short-packet communication

C : Ciphertext
T:Tag

Initial design

- We want to make it secure with tweak functions
- How should we modify plain CBC-MAC + CFB?
- How many tweak functions needed, where to insert?

T:Tag

Concrete design = CLOC

- Investigated a large number of possibilities
- We found a solution using 5 tweak functions +2 msb-fixing functions
- h, f1, f2, g1, g2, and fix0, fix1
- The result is CLOC (presented at FSE 2014 and submitted to CAESAR) [Iwata-M-Guo-Morioka]

Decomposition of CLOC

- How we prove the security of CLOC?
- Decomposition needs to consider various cases on the lengths of Nonce, AD, and plaintext/ciphertext
- The analysis is considerably more complex than the case of MAC, as follows

Conditions for the tweak functions

- If these 26 functions were independent, proving security is not difficult
- We have 26 functions -> ${ }_{26} \mathrm{C}_{2}=325$ differential provability constraints to make CLOC secure !
- Removing equivalent ones, there remains 55 constraints
- Ideally all should be satisfied $w /$ prob $=1 / 2^{n}$
- How we make ?

Fig. 9. Differential probability constraints of $f_{1}, f_{2}, g_{1}, g_{2}$, and h

Building the tweak functions

- For efficiency reason we require the tweak functions to be
- computed by word permutation and XOR, with 4 words
- -> each function is a 4×4 matrix over $G F\left(2^{\wedge} n / 4\right)$
$-\quad->$ differential $\mathrm{pr}=1 / 2^{\mathrm{n}}$ iff corresponding sum of matrices is full rank (4)
- Define a generator matrix M as

$-K \cdot M=(K[1], K[2], K[3], K[4]) \cdot M=(K[2], K[3], K[4], K[1]$ xor $K[2])$
- Assign M^{i} to a tweak function
- $\mathrm{M}^{15}=\mathrm{M}^{0}=$ identity so we have $14 \wedge 5$ space for search
- Each Mi^{i} (except $\mathrm{i}=5$ and 10) can be implemented using at most 4 word XORs and a block permutation

Search

- We associate $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right) \in\{1, \ldots, 14\}^{5}$ with ($f_{1}, f_{2}, g_{1}, g_{2}, h$)
$-f_{1}: M^{i 1}, f_{2}: M^{i 2}, g_{1}: M^{i 3}, g_{2}: M^{i 4}, h: M^{i 5}$
- Tested all $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right) \in\{1, \ldots, 14\}^{5}$ with 55 constraints, using computer
- matrix rank computations
- 864 combinations proved to be secure
- Define a cost function to choose the best combination (\# of XORs etc.)
- The chosen one is $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right)=(8,1,2,1,4)$
- This specifies CLOC

Performance of CLOC-AES

- Primary focus : embedded software
- Atmel AVR ATmega128
- 8-bit microprocessor
- Using AVRAES
- 156.7 cpb for encryption, 196.8 cpb for decryption
- Compare CLOC with EAX and OCB3
- All modes are written in C
- OCB3 is taken from OCB website, w/ some modifications for optimized performance on AVR

Software Implementation

	ROM (bytes)	RAM (bytes)	Init (cycles)	Speed (cycles/byte)					
(ata 16	32	64	96	128	256				
CLOC	2980	362	1999	750.1	549.0	448.4	414.9	398.2	373.0
EAX	2772	402	12996	913.6	632.5	490.8	443.6	419.9	384.5
OCB-E	5010	971	4956	1217.5	736.1	495.5	412.2	375.1	314.9
OCB-D	5010	971	4956	1252.2	773.4	534.0	451.2	414.3	354.4

- 1-block AD, no static AD computation
- In CLOC, the RAM usage is low and Init is fast, and it is fast for short input data, up to around 128 bytes

Conclusions

- Two design ideas to make blockcipher modes efficient
- Inverse-removal : removing BC inverse w/o increasing BC calls
- substituting $\mathrm{BC} / \mathrm{BC}^{-1}$ with 2 -round Feistel
- Result is OTR : inverse-free, rate-1, parallel AE
- Direct tweaking : reducing the memory amount, removing precomputation
- Result is CLOC : a low-overhead AE, fast for short input
- CLOC focuses on (embedded) software
- We also designed SILC as a variant of CLOC for (constraind) hardware
- Would be applicable to other application areas ...

Thank you !!

[^0]: ${ }^{\dagger} \mathrm{GF}\left(2^{n}\right)$ multiplication
 ${ }^{\ddagger}$ Security degrades as c approaches 1
 ${ }^{\top}$ two-block partition

